
Building a Virtually Air-gapped Secure Environment in AWS∗
with Principles of DevOps Security Program and Secure Software Delivery

Erkang Zheng
LifeOmic, Inc.

Morrisville, North Carolina
erkang.zheng@lifeomic.com

Phil Gates-Idem
LifeOmic, Inc.

Morrisville, North Carolina
phil.gates-idem@lifeomic.com

Matt Lavin
LifeOmic, Inc.

Morrisville, North Carolina
matt.lavin@lifeomic.com

ABSTRACT
This paper presents the development and configuration of a virtu-
ally air-gapped cloud environment in AWS, to secure the production
software workloads and patient data (ePHI) and to achieve HIPAA
compliance.

CCS CONCEPTS
• Security and privacy → Domain-specific security and pri-
vacy architectures; Trust frameworks; Software security engineer-
ing; • Software and its engineering→ Risk management;

KEYWORDS
cybersecurity, security, trust, DevOps, cloud, AWS, risk manage-
ment
ACM Reference Format:
Erkang Zheng, Phil Gates-Idem, and Matt Lavin. 2018. Building a Virtually
Air-gapped Secure Environment in AWS: with Principles of DevOps Security
Program and Secure Software Delivery. In HoTSoS ’18: Hot Topics in the
Science of Security: Symposium and Bootcamp, April 10–11, 2018, Raleigh, NC,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3190619.
3190642

1 INTRODUCTION
With all the latest attacks on Health IT, especially ransomware, we
need a security operating model that requires minimal resources to
achieve not only compliance, but more importantly, real security
to protect the confidentiality, integrity, availability and privacy of
patient data and sensitive personal information.

Cloud is no longer a fringe idea or for just shadow IT. Not only
has it been embraced by the vast technology startup community,
cloud adoption has become a top priority of many large enterprises.
The perspective and consensus around the security of cloud has
quickly taken a 180. It has quickly shifted from "hell no" to "cloud
can be more secure than your own infrastructure". That’s true, but
how?

LifeOmic was founded at the end of 2016, building a secure
precision medicine platform utilizing cloud technologies. We im-
plemented a "zero trust", data-centric security model with and a
∗copyright 2018 LifeOmic, Inc. and authors

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6455-3/18/04.
https://doi.org/10.1145/3190619.3190642

virtually air-gapped production environment by harnessing the
power of cloud infrastructure, platform and services in Amazon
Web Services (AWS).

1.1 Structure of this paper
In this paper, we discuss these four important concepts and imple-
mentations:

- First, the principles, assumptions, and assurances of an ef-
fective security program for a cloud DevOps organization.

- Second, how LifeOmic built a virtually "air-gapped" envi-
ronment in AWS to secure its production workload and re-
sources by prohibiting any internal network connectivity or
user access.

- Third, how software is securely delivered to this "air-gapped"
environment without VPN or SSH access.

- Finally, how to ensure the secure software delivery process is
followed using production change management automation.

2 BUILDING AN EFFECTIVE SECURITY
PROGRAM, THE RIGHTWAY

The design and implementation of a security program has direct and
long-term impact to the effectiveness and efficiency of an organiza-
tion’s security operations. Many security programs are designed by
adopting one of more industry frameworks, such as ISO 27001, NIST
Cybersecurity Framework (CSF). Being in the healthcare industry,
LifeOmic has chosen to align its security program to the Health
Information Trust Alliance Cybersecurity Framework (HITRUST
CSF) as well as the HIPAA data privacy and security provisions.
HITRUST CSF was developed in collaboration with healthcare and
security experts and has become the de facto standard for health-
care compliance. The framework covers extensive controls and
requirements across 19 security domains.

Additionally, a risk-based approach is taken, following a set of
assumptions, assurances, and principles described below.

2.1 Assumptions and Assurances
First and foremost, we must recognize and accept that cyberattacks
are inevitable. No individual or organization, no matter how large
or small, is immune to cyberattacks. At some point, a malware
will infect one of the systems. An attacker will somehow gain
unauthorized access to a resource. The recent breach of a Tesla-
owned Amazon Web Services (AWS) account hijacked to mine
cryptocurrency1 is a good example and reminder of that fact.

Therefore, we first need to assume compromise but expose
no single point of compromise. We must limit the attack blast
1http://fortune.com/2018/02/20/tesla-hack-amazon-cloud-cryptocurrency-mining/

https://doi.org/10.1145/3190619.3190642
https://doi.org/10.1145/3190619.3190642
https://doi.org/10.1145/3190619.3190642


HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA E. Zheng et al.

radius such that each attack is contained as tightly as possible. This
ensures that the compromise of one system or user does not easily
propagate or escalate.

We must also track everything since you cannot protect
what you can’t see. This involves maintaining an always up-to-
date view of all users, assets, resources, compute instances, and
data repositories whether they are on premise or in the cloud, as
well as the real time analysis of events and alerts across the entire
environment.

In order to achieve the above, automation is key because peo-
ple don’t scale and changes are constant. The amorphous na-
ture of the cloud and speed of DevOps presents unprecedented
challenges in security. Security operations will never be able to
keep up unless we take a DevSecOps approach to automate as
much as possible.

Automation is not everything. We must also build products
that are secure by design and secure by default. Software devel-
opment shall conform to the highest standard of security through-
out its development lifecycle, from security design and threat mod-
eling, to code scanning and reviews, to secure deployment and
penetration testing. A sound secure development process ensures
security is built-in, not bolt-on to every component of every soft-
ware.

Last but not least, we must engage everyone in security. It is
often said that security is everyone’s responsibility. This includes
sharing the responsibility and ownership of security with the en-
tire organization, especially the DevOps teams, and leveraging
crowd-sourced services such as a public bug bounty program. The
level of engagement will be meaningful if security is not driven by
rewarding the right behaviors instead of fear and roadblocks.

In a nutshell, a culture shift is required for the security in modern
SaaS operations to favor transparency over obscurity, practi-
cality over process, and usability over complexity.

3 THE VIRTUALLY AIR-GAPPED
ENVIRONMENT

Many attacks start by taking advantage of vulnerabilities in a rel-
atively low risk system – usually an end-user device. This gives
attackers "a way in" to the corporate environment. After gaining a
foothold, the attacker can now try to escalate privilege and move
laterally to compromise other devices on the internal network, until
the final targets are reached.

Let’s ask ourselves this question:
How do you ensure, at any given time and at all times, that none of

the user systems on the internal network are compromised and there-
fore cannot further infect and impact others on the same network?

The answer is simple – you can’t. The probability of someone’s
system getting compromised at some point is practically guaran-
teed.

Instead, we must take a data-centric approach to build on a zero-
trust security architecture. In this architecture, granular security
policies are applied to small segregated environments based on
criticality of resources, and to reduce the blast radius to an absolute
minimum.

3.1 Zero-trust architecture
"Zero Trust" is a data-centric security design that putsmicro-perimeters
around specific data or assets so that more granular rules can be en-
forced. It remedies the deficiencies with perimeter-centric strategies
and the legacy devices and technologies used to implement them.
It does this by promoting "never trust, always verify" as its guid-
ing principle. This differs substantially from conventional security
models which operate on the basis of "trust but verify".

In particular, with Zero Trust there is no default trust for any
entity – including users, devices, applications, and packets – re-
gardless of what it is and its location on or relative to the corporate
network. In addition, verifying that authorized entities are always
doing only what they’re allowed to do is no longer optional; it’s
now mandatory.

3.2 Segregated environments meet short-lived
processes

We extend the zero-trust security model with a "Minimal Infrastruc-
ture" approach, where we use "Anything-as-a-Service" whenever
possible, to harness the full power of the cloud. This includes the
use of Amazon Web Services (AWS) as our main infrastructure
as well as other cloud services such as Okta for identity and access
management (i.e. the cloud identity provider/IdP).

The suite of cloud services allows us to contain and control access
at a much more granular level, compared to operating on-premise
infrastructure. We are able to more easily integrate and automate
security operations via access to the extensive APIs provided by
the cloud services.

In AWS, there are separate accounts for development, test, De-
vOps infrastructure, security and production. They connect to an or-
ganizational master account for centralized billing. Each account is
self-containedwith its own security policies for access control. Addi-
tionally, minimizing infrastructure significantly reduces always-on
attack surfaces. Services that are not used are turned off, instead of
being idly available which opens itself up to attacks.

LifeOmic platform is designed on a microservices architecture,
heavily leveraging Docker containers and AWS Lambda func-
tions. The containers and Lambda functions are short-lived – they
are spun up as soon as a request comes in and are terminated right
after their job is complete. Each Lambda function is active for no
more than five minutes. Each container or function operates in an
individually isolated processing environment.

The ephemeral nature of our computational instances not only
makes our services extremely scalable, but also virtually impene-
trable. This operating model minimizes persistent attack surface
and blast radius, making it virtually impossible for any Advanced
Persistent Threat (APT) – the main culprit of most high profile
cyber attacks – to gain a foothold, replicate in the environment,
and exfiltrate data.

3.3 Need-based temporary access
It is a commonly known security best practice to provision access
following the least-privilege principle. We follow that approach but
additionally extend it to allow only temporary access to resources
in our AWS environments.



Building a Virtually Air-gapped Secure Environment in AWS HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA

LifeOmic employees and the underlying LifeOmic platformmicro-
services are restricted to just the capabilities that they need to do
their job.

For employees, least-privileged access means that their access to
production systems is extremely limited or non-existent. If given
access to production, then it is for a short duration with minimal
capabilities. For example, when troubleshooting a production prob-
lem then only read-only access to the infrastructure (not customer
data) is given. An employee’s identity and access permissions are
centrally managed via a single sign on (SSO) solution. During
emergency operational issues, an employee can be quickly given es-
calated privileged by highly trusted individuals. All activity related
to this process is captured and available for future audits.

For services, least-privileged access means that the role of a given
microservice is configured to be as restrictive as possible without
impeding its intended functionality. For example, if a microservice
uses DynamoDB as a storage backend then it only has access to
the DynamoDB tables that it owns. Furthermore, a microservice
should only be allowed to communicate with another microservice
when required.

Access to LifeOmic AWS accounts are permissible through tem-
porary credentials / sessions only. No persistent users, passwords
or access keys are allowed in AWS IAM configurations for end-user
access, either to the AWS console or AWS CLI. The access is also
protected by multi-factor authentication (MFA) at least once
every eight hours or with every high-risk access (e.g. access from a
new location, unknown device, or to access privileged resources).
This is achieved using the Assume Role capability in AWS Identity
and Access Management (IAM) service.

AWS Console Access.

- An organization master account in AWS is configured with
IAM roles such as Developer and Security.

- SAML based Single Sign On (SSO) and a trust relationship is
established between the pre-defined roles in lifeomic-master
AWS account and an "AWS application" provisioned in Okta.

- Users are assigned their corresponding roles through appli-
cation and role assignment in Okta.

- Via SSO, Users authenticate through Okta by using their
Okta username, password, and MFA.

- Upon successful authentication and MFA validation, users
are logged into the lifeomic-master AWS account using AWS
Assume Role capability.

- The roles in master by default has highly restricted access.
For example, the Developer role does not have access to
any services and resources in the master account.

- The user is required to Assume a Role in a sub-account, con-
nected via cross-account trust policy defined at account boot-
strap or through an approved change management process.
For example, a Developer can assume the Administrator
role in lifeomic-dev AWS account, which is the sandboxed
development environment in a separate AWS account.

AWS CLI/SDK Access.

- A command line tool, Okta AWS-CLI2, is used to obtain
temporary credentials (access keys) for developers to connect
to AWS using the CLI or SDK.

- By running theOktaAWS-CLI tool, developers are prompted
to authenticate to Okta using their Okta credentials and MFA
token/app.

- Upon successful authentication and MFA validation, a tem-
porary access key and session token is inserted into the local
configuration file (e.g. /.aws/credentials and /.aws/config).

- These temporary credentials expire after one hour and a new
temporary credential must be obtained for access.

- Through this method, developers are granted the same per-
mission as they would by assuming the Developer role
through AWS console.

3.4 Watch everything, even the watchers
You can’t protect what you can’t see. As the famous strategist, Sun
Tzu, once said, "Know thy self, know thy enemy. A thousand battles, a
thousand victories." It all starts with knowing ourselves. This applies
to the infrastructure, environments, operations, users, systems,
resources, and most importantly, data. It is important to inventory
all assets, document all operations, identify all weaknesses, and
visualize/understand all events.

This includes conducting various risk analysis, threat modeling,
vulnerability assessments, application scanning, and penetration
testing. Not only that, this requires security operations to keep an
eye on everything, and someone should also "watch the watchers".

As part of LifeOmic security operations, all environments are
monitored, all events are logged, all alerts are analyzed, all assets are
tracked. There is no privileged access without prior approval or full
auditing. For our critical environments in AWS, we integrated two
independent solutions to monitor the infrastructure and account
configurations, user activities, and security events to ensure that
one solution would cover anything that might be missed by the
other, and that if one fails or is compromised, the security team is
alerted via the second monitoring solution.

3.5 Establishing the "air gap" to production
For the production environments in AWS, we want to provide an
even higher level of security assurance, in a way such that

- There is no internal network connectivity into the environ-
ment such as VPN, SSH, or AWS DirectConnect.

- LifeOmic engineers can only access applications logs in pro-
duction for troubleshooting and support, but have no access
to systems, configurations, resources, workloads or any cus-
tomer data.

Any privileged access into production environment requires an
approved changed management ticket and passing four security
gates:

- The elevated role must be assigned to the approved individ-
ual in the centralized IdP (Okta);

- The user must authenticate and pass MFA validation;

2https://github.com/oktadeveloper/okta-aws-cli-assume-role



HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA E. Zheng et al.

Figure 1: LifeOmic Cloud DevSecOps Blueprint (each purple dot represents a unique security control)

- An explicit deny access rule to production must be tem-
porarily lifted for the user to assume a privileged role in
production; and

- Even with the privileged access, certain risky actions such
as making changes to IAM policies, users, roles or groups
and accessing customer data are explicitly denied.

Privileged access role does not provide the ability to access pro-
duction workloads at the network layer, such as SSH.

Now, the question is, how do we get software deployed into such
environments?

4 SECURE SOFTWARE DELIVERY PIPELINE
Security of a production software system does not start when the
software is running in the production environment. Security starts
from the very beginning – when the software is written – and
continues throughout the deployment process. Mature software de-
livery pipelines leverage numerous security checks. At each stage in
the process, risks should be assessed, and countermeasures should
be implemented.

4.1 Automation
A fast software delivery pipeline is not the only benefit of automa-
tion; automation minimizes human errors and human intervention
which greatly improves security.

LifeOmic relies on a fully automated Continuous Integration /
Continuous Delivery (CI/CD) software delivery pipeline. The soft-
ware delivery pipeline handles running tests, scanning code for
vulnerabilities, building software, deploying changes, and monitor-
ing production systems.

Humans make mistakes. For this reason, LifeOmic requires all
changes to the production platform to be automated. This alleviates
the need for anyone to have production access to do their job.

4.2 Infrastructure as code
LifeOmic closely adheres to the infrastructure as code policy. This
policy dictates that all infrastructure should be described in code.
Because infrastructure is code, it can be versioned, tested, built, and
deployed just like normal application code. At LifeOmic, we use
terraform to declaratively describe and deploy the infrastructure.

4.3 Immutable builds
A build produces artifacts that encapsulate the logic of the software
and the instructions for how to deploy it. These build artifacts do not
change as they are used to deploy the changes to each environment.

4.4 Developer friendly
Happy developers are typically more productive. One way of keep-
ing developers happy is to remove the manual work and automate
as much as possible. When developers are annoyed by manual work
they will start trying to circumvent the process which is exactly the
opposite of what a company wants to achieve when they implement
new security measures. At LifeOmic, we want developers to focus
on writing code. Beginning with code review and tooling, develop-
ers are trained to follow the process from the very beginning which
greatly simplifies the work that is required by them downstream.

4.5 Deep Dive: LifeOmic software delivery
pipeline

To fully describe the LifeOmic software delivery pipeline, we will
break it down to the following stages:



Building a Virtually Air-gapped Secure Environment in AWS HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA

(1) Code and Test
(2) Build
(3) Deploy
(4) Monitor

When developing software for a multi-tenant cloud platform,
most companies aim for Continuous Integration / Continuous De-
livery (CI/CD).

Typically, deploying numerous small changes quickly is less risky
than deploying a lot of changes infrequently. When the production
system starts to diverge drastically from the latest code, it is harder
to anticipate some of the problems that will arise when changes
are finally integrated into the production system. Automation is
essential for an effective CI/CD process because automation allows
for rapid validation and deployment.

Stage 1: Code and Test. Every company wants to trust their
developers but writing code for large distributed systems is com-
plicated, so automated and manual reviews are needed to identify
potential vulnerabilities or defects in the source code.

Modern source code management systemsmake it easy for teams
to collaborate on code. Code reviews via a pull request are an es-
sential step in the coding process. When developers are ready to
integrate their code changes into the mainline code (or master
branch) then they should push their code to a branch and open a
pull request. The pull request gives other developers and security
experts a chance to review the code before it is merged. Each re-
viewer should provide feedback and approve the pull request once
all feedback has been addressed. This code review process makes it
possible for teams to share knowledge and provides an additional
security safeguard.

The LifeOmic platform consists of code from numerous projects
that can be built, tested, and deployed independently. Each project
is contained within its own Bitbucket git repo, and each project
typically corresponds to a single micro-service, a portion of the
infrastructure, or an internal tool.

Every software delivery pipeline should also include multiple
levels of testing. The first level of testing should be unit testing
which involves isolating small portions of the code and testing it
independently by closely controlling the input and verifying that
actual output matches the expected output. The packaged code
should ideally contain integration tests and smoke tests. Integration
tests run in a target environment before being deployed. These tests
ensure that the target environment is in a state that is ready for
the given changes. Smoke tests run in a target environment after
changes are deployed. These tests provide a "sanity check" to make
sure the system is still operating normally after the changes have
been applied.

Bitbucket repos are configured to ensure that developers adhere
to a prescribed process.

The prescribed process for merging code to the master branch
requires the following:

- Pull request must be approved by someone other than author
before it can be merged.

- Pull request branch must have a passing build before it can
be merged.

- All tests on the pull request branch must be passing.

Once code is merged to master, it is built, and the build artifacts
are published.

Before code is ever deployed it should be analyzed in a sand-
box using static and dynamic code access. The software delivery
pipeline should verify that all code scans have been completed
before accepting the new code.

Security measures in the Code and Test phase:
- Source code "linting" (enforcement of code style and best

practices)
- Comprehensive test suite development
- Secure coding best practices
- Local secure code analysis
- Code review / pull requests
- Source control versioning
- Infrastructure as code

Stage 2: Build. Code that was written on developer worksta-
tions should be built in a secure build environment. While develop-
ers should be able to build their software locally to test the build
and deploy process, only official builds should be deployed to pro-
duction environments. Builds should be signed by the trusted build
system. Builds that haven’t been properly signed should never be
deployed to production.

Official builds of the software happen via a single managed
instance of Jenkins. Each build job for codemerged tomaster branch
produces one or more artifacts that are stored inAWS S3. The build
artifacts are organized by the build ID and are immutable as they
move through the deploy process.

A typical LifeOmic project will produce the following build arti-
facts:

- Build manifest: The build manifest describes the contents
of the build as well as metadata about the build (build date,
build number, git commit, etc.)

- Deploy docker image: This docker image encapsulates the
instructions for deploying the build. When deploying to a
target environment, this docker image is used to launch a
container that deploys the software. This container contains
terraform, AWS CLI, and other tools that perform the de-
ployment via a repeatable process.

- Runtime docker image: For services that run in AWS
Elastic Container Service (ECS), one or more runtime
docker imageswill be produced during the build. At LifeOmic,
most services deploy toAWS Lambda instead of AWS ECS,
so these services do not produce a runtime docker image.

Security measures in the Build phase:
- Code signing to ensure immutable builds
- Perform automated testing and verify passing results
- Perform automated security scans and ensure no vulnerabil-

ity is introduced, including
* Open source dependency security analysis
* Static application security testing
* Automated baseline dynamic scanning
* Docker image vulnerability scanning

Stage 3: Deploy. The deploy process is perhaps the most chal-
lenging stage of the software delivery pipeline because it involves
applying changes to a production system while trying to minimize



HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA E. Zheng et al.

the impact to end-users. The deploy needs to be secure, controlled,
and repeatable. The deploy process is especially challenging when
aiming for zero downtime.

Immutable builds should be deployed and tested in "lower" envi-
ronments, such as dev and test, before being promoted to produc-
tion.

At LifeOmic, deploys are fully automated to minimize human
error and to ensure that all deploys are repeatable from develop-
ment up to the final production environment. Each environment
lives in isolation within its own AWS account. Furthermore, each
environment is "virtually air-gapped" which means there is no pri-
vate network connectivity between environments. Because there
is no private network connectivity deploys are orchestrated via
the AWS APIs. The IAM role given to the Jenkins service (but not
developers) allows the Jenkins service to assume a role in each
target environment that gives it a very narrow interface for ini-
tiating the deployment of new changes. The process to initiate a
deploy involves invoking an AWS Lambda function that accepts
the following input arguments:

- Deploy Manifest URI: The deploy manifest URI points to
a file stored in S3 bucket that describes the deploy request.

- Deploy Manifest Signature: A cryptographic signature
of the deploy manifest file is generated by a Jenkins build
job using a pre-shared secret. The pre-shared secret used
to generate the signature is known only by Jenkins (stored
securely as a Jenkins secret) and by the target environment
(stored usingAWS SystemsManager Parameter Store as
an encrypted secure string).

The AWS Lambda function that receives the deploy request
validates the signature, and, if valid, launches a worker inAWSECS.
Theworker then fetches the build artifacts as described in the deploy
manifest and launches the deploy docker image that encapsulates
the deployment job. Because the worker is not human, the system
is less prone to human error. Also, by not allowing humans to apply
the changes, it is much less likely that a humanwill have intentional
or unintentional access to production data. This design choice thus
makes it easier for the platform to adhere to privacy requirements
as prescribed by HIPAA or other certifications.

Security measures in the Deploy phase:

- Fully automated builds ("hands-free deployments")
- Verify that the original source codewas approved bymultiple

people
- Verify that change management ticket has been approved
- Verify build signatures
- Verify security scans
- Verify that tests passed
- Automated analysis of infrastructure code
- Automated analysis of changes
- Run integration tests
- Run smoke tests

Stage 4: Monitor. Once software is running in a production
environment, it is important to monitor the health and safety of
the system. Various proprietary and third-party tools are used to
monitor the system and send alerts. These alerts are then curated
so that the security operations team is not flooded with noise or

false positives. The security response team has tools available that
allow them to investigate incidents.

Security measures in the Monitor phase:

- Tooling for recognizing, analyzing, and mitigating vulnera-
bilities

- Health checks
- Application metrics
- Anomaly detection
- Security audit logs
- Continuous penetration testing

The next big question becomes, how do we ensure that this process
has been followed with each production deploy? What type of reviews
and approvals are required and how does it scale with CI/CD in a
Cloud DevOps operating environment?

5 PRODUCTION CHANGE MANAGEMENT
AUTOMATION

5.1 Goals
The goals of the change management process for our organization
is to document what is being changed and, in the case of changes to
software that we develop, that the changes were developed using
the processes documented to ensure high quality products. We
require all software changes to undergo peer review and security
scanning before the code is put into production. The requirements
for production deployments will evolve over time but for the sake
of this paper, those are the two initial requirements.

Our initial implementation of the change management process
was for developers to propose a change and write out a list of
changes being made, ideally with references to automated builds
and individual code changes. A security team member would re-
view the list of changes, manually looking for the details of each
change and checking that each change was done following the
correct practices. Needless to say, the approach of using humans to
document the changes and to review the practices was both time
consuming and prone to oversights. It was possible for the person
requesting the change to forget to list a change that was made, and
it was possible for the security review to incorrectly review the
changes that were listed. With people focused on different tasks
at different times, it was common for the change requester to be
stuck waiting on a human reviewer and for the human reviewer to
be waiting for more details from the requester.

Change Management becomes easier because it’s easier to verify
that the process was followed via automation. With high levels of
automation, you have less reliance on a "paper pusher" that needs
to click approve on every change.

Given our goal of quickly improving our production systems
while maintaining a very high level of functional and security
quality, it seemed like a better change management process was
possible. The tools that we use for software development, Jenkins,
Bitbucket, and Jira, provide a good history of what happened, and
it was possible to automatically collect both details of what was
being changed and proof that the correct processes were followed.
In the end, a system that was both more thorough than humans
and allowed for faster change in production was created.



Building a Virtually Air-gapped Secure Environment in AWS HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA

5.2 Implementation
The first step to an automated approval process was to more accu-
rately capture what code changes were being requested for deploy-
ment to production. In our system, each deployment is defined by
a specific Jenkins project and build identifier. All of our code is
stored in git repositories in Bitbucket and for each Jenkins build,
it is possible to list which versions of the code are included in the
build. When reviewing change requests, the list of code changes,
not just the code version, is desired. All of our change management
requests are stored in Jira and each request includes the project
and build details. By using Jira’s search capabilities, it is possible
to find the previous version of the project that was approved for
production. With the previously approved and the newly proposed
versions, git can be used to complete the changes between the two
versions. That list of changes is a huge step forward from a human
created list because it is consistently created and it always accurate,
never accidentally forgetting a change or adding an extra one.

With a list of changes since the last production approval, the next
step is to review the changes for the required peer code reviews. The
Bitbucket Pull Request feature is used by developers to propose
code changes, to collect peer feedback and to integrate the changes
after approval. The Bitbucket service allows the data about pull
requests to be extracted and analyzed through an API they provide.
For each change that is being proposed for production, the pull
requests for the project are reviewed to make sure each change has
an associated pull request. For each pull request, the peer reviews
are captured by the reviewer giving approval in the request. The
change management review tool will ensure that every change
in the pull request has been approved by somebody other than
the author. If all changes in the proposed deployment have an
associated pull request and each pull request is marked as approved
by somebody other than the original developer, then the change
management review tool will proceed to checking for rest of the
required processes.

After reviewing the changes for peer reviews, the next require-
ment in automatic change management approval is that a security
scan has been run for the code. For this check, the Jenkins build
associated with the proposed change is reviewed again. When a
Jenkins build is executed, logs for the build are stored for later
review and those logs contain the details of whether a security scan
was run and whether any vulnerabilities were found. If the logs for
the build can be found, and if a successful security scan is detected
in the logs, then the change management review tool will proceed
to building a final assessment of the proposed production change.

Assuming the code review and security scan processes have
been followed, the automated change management tool will leave a
comment in in the change management request with the details of
each change that was reviewed and details of the detected security
scan. If all processes have been followed correctly, then the change
management tool will add itself to the list of approvers and will
mark the change management request as approved.

If at any time in the automated review process a deviation from
our required process is found, the review automation will collect
the relevant information and leave a comment in the change man-
agement request ticket. In the case of a process deviation, the ticket
is left in an unapproved state and it is up to a human to review

what was found and to ensure that the changes for production are
acceptable before approving the deployment.

5.3 Integrating change management into the
software delivery pipeline

This automated change review process is integrated into LifeOmic
continuous delivery pipeline in 3 steps:

1. Create/Validate Change Request Ticket. Jenkins is used
for continuous delivery (build and deploy), and a Product Change
Manage project (PRODCM) is created in Jira to track the change
request tickets and approvals. We developed a Jenkins-Jira automa-
tion such that:

- Whenever deployment to a controlled environment (e.g. pro-
duction accounts and infrastructure account) is requested,
the Jenkins job will check for an approved PRODCM ticket,
or create a new ticket if not found.

- The automation code will attempt to automatically populate
the required data for the PRODCM ticket, such as build
number, deploy action, target environment, etc.

- If the data cannot be automatically populated, the job is
paused to prompt an engineer for manual input.

- Job will be paused until the request is approved or canceled
(rejected). Before continuing to deployment, Jenkins will
validate the change request’s build job identifier, build num-
ber and source code branch.

2. Detect Change Details and Obtain Approval. The afore-
mentioned review automation is implemented as in such way (the
code is named change-management-bot):

- Whenever a PRODCM ticket is created, the bot is triggered
via a Jira webhook.

- The bot is configured to examine the following:
* Look for all the code changes since the last approved
PRODCM ticket.

* Check that all code commits have been approved by a
reviewer other than the author, except for a version bump.

* Ensure that security scanning has been completed for this
build and no blocking issue is found.

- Details of the analysis are posted to the PRODCM Jira ticket.
An example is shown in the screenshot figure.

- When all the required checks pass validation, the bot rec-
ommends approval. The change-management-botmay be
configured to automatically approve the ticket if all of the
required conditions above (and future ones) are met. Addi-
tionally, a manual review / approval is always required in
the following conditions:
* This is the first prod deploy with no prior approval history
* A related CM ticket / deploy of the same project is pending
* If human approvals are needed, the required approvers
will review the details and approve/decline accordingly.

- Random inspections of automatically approved tickets are
performed by the security team monthly to ensure the au-
tomation functions properly.



HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA E. Zheng et al.

Figure 2: An example screenshot of the comments posted on
a PRODCM ticket by change-management-bot.

3. Detect RiskyChanges, Deploy andClose. Jenkins job pro-
ceeds only with an approved and validated PRODCM ticket.

During production deploys, a terraform plan is always per-
formed first to detect risky changes. Examples of security-related
or risky changes include:

- Change to the "policy" attribute of an AWS resource
- Change to IAM policy, role, user or group
- Attach/detach policy
- Change/delete to security group
- Deletion of production resources
If risky changes are detected, the deploy is paused and the

PRODCM ticket is updated to require manual review before contin-
uing. Once a deploy is completed, the PRODCM ticket is automat-
ically resolved and closed.

5.4 Impact
After months of running the automated changemanagement review
tool there was a clear improvement in the documentation about
what changed in each change to production and a more complete re-
view of the processes followed for each of those changes. The time
between requesting a change to production and the request being
approved has dramatically reduced allowing faster improvement
to production systems. Equally important, less time from the secu-
rity team is spent performing mechanical reviews of changes and
the teams time can be spent on more valuable work of reviewing
complicated changes or doing proactive architectural reviews.

One design principal of the automated reviews was that the tool
would never automatically reject a change and would, in the worst
case, leave a comment about any process deviation that were found
and defer the approval to a human. Because humans are slower
than computers, the automated review tool has led to some cultural
improvements from the development team. Developers choose to

follow processes that allow for better auditing in exchange for faster
production changes and they push each other to follow the correct
process for all changes so that deployments to production are not
held up by the need for a human review. The automation caused
the incentive of fast production deployments to be self-motivate
development to improve security process compliance.

6 CONCLUSIONS
Implementing this virtually "air-gapped" environment in AWS
required additional efforts in the software delivery pipeline and
change management automation. This upfront effort was signifi-
cant, but it enabled a much more delightful developer experience
while providing maximum security assurance to our customers.


	Abstract
	1 Introduction
	1.1 Structure of this paper

	2 Building an effective security program, the right way
	2.1 Assumptions and Assurances

	3 The Virtually Air-gapped Environment
	3.1 Zero-trust architecture
	3.2 Segregated environments meet short-lived processes
	3.3 Need-based temporary access
	3.4 Watch everything, even the watchers
	3.5 Establishing the "air gap" to production

	4 Secure Software Delivery Pipeline
	4.1 Automation
	4.2 Infrastructure as code
	4.3 Immutable builds
	4.4 Developer friendly
	4.5 Deep Dive: LifeOmic software delivery pipeline

	5 Production Change Management Automation
	5.1 Goals
	5.2 Implementation
	5.3 Integrating change management into the software delivery pipeline
	5.4 Impact

	6 Conclusions

